CKM measurements and CPV in *b* decays at Belle II

A. Gaz KMI, Nagoya University

Rare Processes and Precision Frontier Townhall Meeting

October 2nd 2020

The CKM UT fit today

- Overall, the SM is in pretty good shape!
- The first generation of B-factories proved the correctness of the CKM paradigm in explaining Flavor Physics;
- There are some small (< 3\sigma) tensions among the different constraints...
- ... they might go away, or points towards New Physics!

The angles

Measurement of ϕ_1 (β)

- Most precise measurement from time-dependent analysis of $B \rightarrow J/\psi \ K^0$;
- Exploiting large B Flavor Tagging efficiency: $Q = (33.8 \pm 3.6 \pm 1.6)\%$ (preliminary);
- At 50 ab⁻¹, the measurement will most likely be dominated by systematic uncertainties (dominant contributions from vertex detector alignment and DCS decays on tag side);

HFLAV average: $\sin(2\phi_1) = 0.699 \pm 0.017$

Belle II (50 ab⁻¹): $\sin(2\phi_1) = 0.xxx \pm 0.005$

• Belle II will have unique sensitivity on penguin amplitude dominated channels (e.g. $B \to \eta' K^0$, ϕK^0 , K^0 _S π^0 , ...), that are potentially sensitive to New Physics.

Target precision: ~0.2°

Measurement of ϕ_{3} (α)

 ϕ_{s} is determined through an isospin analysis of the $B \to \pi\pi$ or $B \to \rho\rho$ systems;

- π^0 's are unavoidable, Belle II will have the edge on LHCb on most of the modes;
- Unique to Belle II: time dependent $B^0 \to \pi^0 \pi^0$ analysis, exploiting π^0 Dalitz decays and photon conversions;
- We expect ~270 signal events @50 ab⁻¹, with an uncertainty of ~ 0.30 on the TD asymmetry (S^{00}) ;
- This will eliminate spurious solutions and improve the precision.

Target precision: ~0.6° (all modes combined)

Solid black line: current sensitivity;

Filled area: extrapolation of Belle results to Belle II luminosity;

Measurement of ϕ_3 (γ)

• The most sensitive method exploitz V_{cb}/V_{ub} interference in $B^+ \to D^0/\overline{D}{}^0$ K^+ ;

- Only tree level amplitudes, fundamental input for the CKM fit;
- Competition with LHCb will be hard...;
- We need to focus on keeping the systematic uncertainties from the Dalitz Plot modeling low, e.g. by using the binned Dalitz Plot;
- Considering also final states with K_s 's and π^0 's.

The sides

- R_t is determined by the B_d and B_s oscillations (currently dominated by LHCb);
- Huge progress expected on $\mathbb{R}_{\mathbf{u}}$, thanks to better precision on $\mathbb{V}_{\mathbf{u}}$.

Measurement of | V_{ub} | at Belle II

- Current precision on $|V_{ub}| \sim 5-6\%$;
- The progress will be driven by the exclusive measurements, thanks to the huge progress in Lattice QCD;
- Hopefully we will also shed light on the inclusive vs exclusive "V_{xb} puzzle":

Expected errors: (Experiment ⊕ Theory)

	Belle (0.8 ab ⁻¹)	Belle II (50 ab ⁻¹)
V _{ub} exclusive (tagged)	$(3.8 \oplus 7.0)\%$	$(1.2 \oplus 0.9)\%$
V _{ub} exclusive (untagged)	$(2.7\oplus7.0)\%$	$(0.9 \oplus 0.9)\%$
V _{ub} inclusive	$(6.0 \oplus 2.5 \text{-} 4.5)\%$	$(1.7 \oplus 2.5 \text{-} 4.5)\%$

CPV in BB mixing

- Last kind of CP violation yet to be observed in B's;
- For the B_d , A_{SL} is predicted to be ~5 x 10^{-4} , almost one order of magnitude smaller than current sensitivity:

$$A_{SL} = \frac{N(\ell^{+}\ell^{+}) - N(\ell^{-}\ell^{-})}{N(\ell^{+}\ell^{+}) + N(\ell^{-}\ell^{-})}$$

 $\begin{array}{ccc} & A^u_{\text{SL}} : \\ \text{BaBar (Il):} & (-0.39 \pm 0.35 \pm 0.19)\% \\ \text{BaBar (D*lv):} & (0.06 \pm 0.17 \pm 0.35)\% \\ \text{D0 (D}\mu\text{X):} & (0.68 \pm 0.45 \pm 0.14)\% \\ \text{LHCb (D}\mu\text{X):} & (-0.02 \pm 0.19 \pm 0.30)\% \end{array}$

 A_{SL}^{s} :
D0 (D_s μ X): (-1.12 ± 0.74 ± 0.17)%
LHCb (D_s μ X): (0.39 ± 0.26 ± 0.20)%

 With a dataset ~100 bigger than BaBar's, we might have a chance to observe it.

Conclusions

- CKM Physics is a big part of Belle II's program;
- We expect very significant progress from Belle II on:
 - → all CKM UT angles (especially on ϕ_2 and ϕ_1);
 - \rightarrow modes with $(\pi^0, \eta, \eta', ...)$'s in the final state;
 - → IV_{ub}I from exclusive decays;
 - \rightarrow CP violation in BB mixing;
- All this will not come for free: reducing systematic uncertainties will be the name of the game;
- The sensitivity studies shown today are taken from:

The Belle II Physics Book

E. Kou et al., PTEP 2019, 123C01 (2019), arXiv:1808.10567 [hep-ex]

Backup Slides

ϕ_1 precision

Time-dependent CP-violation parameter

Direct CP-violation parameter

	No	Vertex	Leptonic
	improvement	improvement	categories
$S_{c\bar{c}s} \ (50 \ {\rm ab}^{-1})$			
stat.	0.0027	0.0027	0.0048
syst. reducible	0.0026	0.0026	0.0026
syst. irreducible	0.0070	0.0036	0.0035
$A_{c\bar{c}s} (50 \text{ ab}^{-1})$			
stat.	0.0019	0.0019	0.0033
syst. reducible	0.0014	0.0014	0.0014
syst. irreducible	0.0106	0.0087	0.0035

φ₁ – penguin dominated modes

Mode	QCDF [32]	QCDF (scan) [32]	SU(3)	Data
$\pi^0 K_S^0$	$0.07^{+0.05}_{-0.04}$	[0.02, 0.15]	[-0.11, 0.12] [36]	$-0.11^{+0.17}_{-0.17}$
$ ho^0 K_S^0$	$-0.08^{+0.08}_{-0.12}$	[-0.29, 0.02]		$-0.14^{+0.18}_{-0.21}$
$\eta' K_S^0$	$0.01^{+0.01}_{-0.01}$	[0.00, 0.03]	$(0 \pm 0.36) \times 2\cos(\phi_1)\sin\gamma \ [37]$	-0.05 ± 0.06
ηK_S^0	$0.10^{+0.11}_{-0.07}$	[-1.67, 0.27]		
ϕK_S^0	$0.02^{+0.01}_{-0.01}$	[0.01, 0.05]	$(0 \pm 0.25) \times 2\cos(\phi_1)\sin\gamma \ [37]$	$0.06^{+0.11}_{-0.13}$
ωK_S^0	$0.13^{+0.08}_{-0.08}$	[0.01, 0.21]		$0.03^{+0.21}_{-0.21}$

•		WA (2017)		5 ab^{-1}		50 ab^{-1}	
	Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
•	$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090
*	ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011
	$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008
•	ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020
(*	$K_S^0 \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
•	$K_S^0\pi^0$	0.17	0.10	0.09	0.06	0.028	0.018

[★] Full study based on Belle II simulation

Extrapolation of Belle/BaBar results

ϕ_2 from TD B $\rightarrow \pi^0 \pi^0$

Beam pipe and PXD detector "radiography"

ϕ_2 from TD B $\rightarrow \pi^0 \pi^0$

Sensitivity on TD asymmetry (50 ab⁻¹)

Impact on ϕ_{o} determination

Filled area: extrapolation of Belle results to Belle II luminosity;

Dashed line: same as above, but adding S⁰⁰.

Reduction of ambiguity by a factor 2 or 4!

October 2nd 2020 A. Gaz

ϕ_2 combination

Channel	$\Delta\phi_2$ [°]
Current world average	$+4.4 \\ -4.0$
$B \to \pi\pi$	4.0
$B \to \rho \rho$	0.7
$B \to \pi\pi$ and $B \to \rho\rho$ Combined	0.6

We will also include $B \to \rho \pi$, but estimating the sensitivity on φ_2 at this time is difficult, as the result depends on the Dalitz Plot structure of $B \to \pi\pi\pi$.